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Abstract

This paper presents an analytical study of electroosmotic (EO) pumps with porous pumping structures. We have developed an analytical
model to solve for electroosmotic flow rate, pump current, and thermodynamic efficiency as a function of pump pressure load for porous-
structure EO pumps. The model uses a symmetric electrolyte approximation valid for the high-zeta-potential regime and numerically solves
the Poisson—Boltzmann equation for charge distribution in the idealized pore geometry. Generalized scaling of pumping performance is
discussed in the context of a parameterization that includes porosity, tortuosity, pore size, bulk ionic density, and the nonuniform conductivity
distribution over charge layers. The model also incorporates an approximate ionic-strength-dependent zeta potential formulation.

0 2003 Elsevier Inc. All rights reserved.

Keywords:Electroosmotic pump; Porous glass; Thermodynamic efficiency; Zeta potential

1. Introduction in 5-cm-long, 1-mm-inner-diameter glass columns packed
with polydisperse silica particles with dimensions ranging

EO pumps are devices that generate both flow rate andffom 1 to 20 um. We estimate that their porous struc-
significant pressure capacity using electroosmosis throughturé should have been able to generate pressures in ex-
pores or channels. The term electroosmosis refers to theceSS Of 40 atm at a 1-kV applied potential. That same
bulk motion of an electrolyte caused by Coulombic forces Year, Theeuwes [7,8] patented and reduced to practice the
acting on diffuse ions near a flow channel’s solid/liquid in- CONCept of miniaturized electroosmotic pumps for the gen-
terface [1]. Although electroosmosis has been studied for €ration of relatively high-pressure flow streams and dis-
nearly two centuries [2], its application to miniaturized de- cussed their application to a variety of controlled drug de-

vices for the generation of high-pressure flow streams has/Very systems. Glass frits 0.2 cm thick with pore diameter
been of interest only in the last three decades. Electroos-0-1 KM were used as the pumping medium, and they demon-
motic (EO) pumps have no moving parts and offer distinct Strated a flow rate of.8 x 107 ul/min (for applied field

advantages over other micropumps including high pressure160 V/cm) and a pressure Capacity of 0.7 atm at 50 V.
(well over one atmosphere of pressure is readily achievable | Ne€uwes noted that pump pressure is linearly dependent on

at 100 V) and large flow rate (greater than 30/min at applied voltage. Two' and a half decades later, Gan apd co-
100 V). These devices have the potential to impact a variety workers [9,10] described thg devglopment (.)f a borosilicate
of applications including microelectronics cooling and bio- ]E)obrqustg(ljass'EthurT{D deV|cetW|th p?re. d|ar_rlw_ﬁter 3_5 Hm
analytical applications [3-5]. Interest in this research area is apricated Using high-temperature sintering. They demon-
increasing. strated the pumping of several fluid chemistries and the ef-

In 1974, Pretorius et al. [6] first described using electroos- fectt Oc]; tg?e chgm|sté|elsSonthowts;%t?)|I|\t>/._IThew pum? g:en—
motic flow to drive a liquid chromatographic separation as Iezz)rale d erkmlr; an 1'1 STt a ked ) lwo yEI!Ea(;S ater,
an alternative to high-pressure pumping, but did not demon- aul and Rakestraw [11] built packe ~column £ pumps
strate the ability to generate high pressure. They demon_and demonstrated that large (12-kV) applied potentials could

. : be used to generate pressure capacities of 340 atm using a
strated a flow velocity of 0.2 mpis at a field of 2000 yem 75-pum inner diameter capillary packed with 3-um-diameter

beads. They used a fabrication method similar to that of
* Corresponding author. Yan [12] for electrochromatographic columns. Extrapolation
E-mail addressjuan.santiago@stanford.edu (J.G. Santiago). of this performance suggests the flow rates of these pumps
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were 100 pfmin for 10-kV applied potentials. Paul and co-
workers patented the use of these pumps as miniaturized
actuation devices and high-pressure valves [13,14]. Zeng et

al. [15] presented an analytical model and characterization

of EO pumps fabricated by packing 3.5-um-diameter beadszA v 4
in fused silica capillaries with inner diameters of 530 um. ~
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These pumps achieved maximum pressure and flow rates Electrical ~ Pressure
of 23.5 atm and 4.8 uymin, respectively, at 2-kV poten- A N double layer

tials. In an effort to increase the flow rate of such pumps, l—s V,

Zeng et al. [16] used polymerized frit structures and slurry L

packing of nonporous silica particles to demonstrate EO _ , o o
. . Fig. 1. Schematic of the porous pump model with idealized cylindrical

pumps th,at delivered maximum f!OW rates and pressures Ofpores of uniform diameter. Flow is modeled within each pore (as shown
0.8 mi/min and 2.0 atm, respectively, at 1.0 kV. More re- o, the right) and then flow rate and current are integrated over all pores in
cently, we demonstrated sintered glass frit pumps that pro-the system. The structure can be characterized by its total volinibe
vide maximum flow rates and pressure capacities on the or-void volume,¥,, its lengthL, and the tortuous characteristic length of the
der of 7 mymin and 2.5 atm, respectively, at 200 V, with pore;Le. The rqtiosve/v and(L./L)? are defined as the porosity and tor-
an active pumping volume of less than 2%fa7]. In par- tosity, respectively.
allel efforts, Chen and Santiago [18] and Laser et al. [19]
demonstrated EO pumps fabricated using planar microma-and Overbeek [20], which leveraged a similar formulation
chined structures in glass and silicon substrates, respectivelyfor electroosmotic flow in porous diaphragm structures. The
Chen and Santiago also presented an analytical model for themodel can be used to derive a set of flow equations that are
estimation of thermodynamic efficiency in these “slot” struc- sjmilar to the corresponding equations for EOF in a single
ture pumps, including a detailed energy balance of a pump capillary [21]. By applying both a pressure load and poten-
and load closed-loop system. tial gradients along the axes of the pores of the pumping

Despite the conference, journal, and patent literature de-structure, expressions can be derived for the velocity field
scribed above, research work on EO pumps has not yetin a single cylindrical pore [21]. Implicitly, in terms of the
provided fullinsight into the operational behavior and funda- electric potential within the pore, the general velocity pro-
mental flow principles behind EO pumps. In particular, gen- fijle within the circular cross section of a pore with a high
eralized scaling (e.g., geometric scaling) analyses, detailedaxial-length-to-radius ratio is
models of electrical double layer (EDL) physics, advective
current effects, and thermodynamic efficiency models have a?pP, r? eCEy %)
not been presented. In this study, we present an analytical (") = _ﬂ<1_ ;) T u <1_ z) 1)
and numerical model that can be used to predict pump flow ) ) .
rate, pressure, and thermodynamic efficiency across varia-Here, Px = AP/L. is the streamwise pressure gradient and
tions in geometry, applied potentials, working fluid chem- Ex = Vett/L. is the streamwise electric field within the
istry, and pressure load conditions. The model treats the POres. The calculation of flow rate and pressure drop there-
porous pumping structure of the pump as a network of many fore reduces to finding an adequate model for the potential
flow channels in parallel and the case of electrical double distribution associated with the EDL in the pore. This ve-
layers with a thickness on the order of the capillary radius (in locity profile can be integrated over the cross-sectional area,
this paper we refer to this regime as “finite electrical double 4. and axial length of the porous materidl, to yield the
layers”). We have used this model to guide the design of our following expression for the flow rate of the entire struc-
EO pumps for high-heat-load heat transfer applications [3]. ture [15,17],

V[ APAa? e AVeg
0=—|- - @
2. Theory T 8uL nL
_ whereA is the cross-sectional area of the porous structure,
2.1. Electroosmotic flow model t = (L./L)? is the tortuosity, ands =V, /¥ is the poros-

) . _ity. We defineL, as the characteristic length of travel for
We treat electroosmotic flow (EOF) in porous media fjow along the pore path and as the physical length of the
as flow through a large number of idealized tortuous mi- porous pumping structurd, andV are the void and total
crochannels in parallel, as depicted schematically in Fig. 1. ojumes of the porous medium, respectively. The term on
In this model, tortuous microchannels (i.e., pores) with cir- o right contains the integral
cular cross sections are assumed to have equal pore radii,
a, and an equal value of zeta potential, The channels a( )

2r

have a tortuosityr and the porous pumping structure has f = ¢ — dr. (3)
a

1— -2
a porosityyr. This model is suggested by the work of Mazur ¢
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The solution to this integral can be determined by solving the
Poisson—Boltzmann (PB) equation for the potential, where

2 —1i<rd(p> 1Znoo’izieexp<—z'e ) (4)

<+ apy) 1 €Y
= rdr\ dr) ¢ kT

The correct formulation for the model depends on the type
of buffer used and the magnitude of the zeta potential of the
EDL [1]. The zeta potential of the glass pumping structures
of interest here are typically of order 100 mV which is sig-
nificantly higher than the terme/kT (equal to 25.7 mV
forz=1 atT = 20°C) in the exponential functions above.
As suggested by Verwey and Overbeek [22] and Hunter [1],
electrokinetic systems with such potential distributions can
be treated as having symmetric electrolytes with the prop-
erties of the counterion (in our case, the sodium ions of
our sodium tetraborate buffer). The physical interpretation
of this approach is that, at zeta potential values well above
25.7 mV, the potential distribution in the EDL is determined
mostly by the attraction of counterions to the charged wall,
while the repulsion of co-ions is less important [1]. For high
zeta potential, the counterion density near the wall is signifi-
cantly higher than that of the co-ion density. In this paper, we
will treat our buffers as symmetric, monovalent electrolytes
with the properties of the sodium ion in determining De-
bye lengths and potential distributions. In determining total
pump current, we will use the charge distributions obtained
with this model for the advective current component, and
measured values of bulk conductivity to estimate electro-
migration outside of the EDL. This treatment of the bulk

\%

conductivity leverages a single measurement to account for

all of the ions (and their respective ionic mobilities) present
in the buffer.
For a symmetric electrolyte with, = —z_, the PB equa-

tion can be expressed as

ld/ d 2n .

2L (L2 = 2o ginn( 22, (5)
rdr\ dr kT

The solution to this nonlinear equation was obtained numer-
ically using a substitution of the forma = 4 arctanlip), as

suggested by Bowen and Jenny [23]. The resulting equa-
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Fig. 2. Numerical solution to the Poisson—Boltzmann equation (Eq. (5)) for
a symmetric electrolyte, shown together with the analytical solution to the
linearized Debye—Hickel approximation. The Debye—Huckel approxima-
tion is accurate only for ratios @f/A of order 100 or larger, and for values
of a/x of order 0.1 and lower.
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Fig. 3. Nondimensional model parametgisandg as a function of nondi-
mensional pore size. The plots are generated using sample parameter val-
ues of¢* = —3.9 and8 = 6.8 assuming a typical zeta potential value of
100 mV.

in Fig. 2, discrepancy between the numerical and linearized
solutions is particularly apparent for valuesddf of order
unity.

Given the numerical solution for the potential, the integral

tion is also nonlinear but less stiff. We employed a fourth- in the flow rate expressiorf,, can also be calculated numer-

order Runge—Kutta algorithm [24] with a shooting procedure ically (using a simple Simpson’s rule integration scheme),
to solve this boundary value problem. The numerical solu- and the result is plotted in Fig. 3. Shown together with this
tion for ¢ is plotted in Fig. 2. As a comparison, we also nhumerical solution is the Debye—Hlckel approximation re-

present in Fig. 2 a solution to a linearized form of Eq. (5),
where the term sinfaep/kT) is approximated agep/kT

(= ¢*). This linearization is the so-called Debye—Hiickel ap-
proximation valid for small zeta potentials, which results in
a second-order-accurate formulation of Eq. (5) for a sym-
metric electrolyte. Rice and Whitehead [21] first used this
approximation to solve for potential distributions in cylindri-
cal tubes, which yields simply = ¢ Io(r*)/Io(a*), where

Ip is the zero-order modified Bessel function of the first
kind. The nondimensionalization in this solution is as fol-
lows: r* =r/) anda™ = a/A. A is the Debye length which,
for a symmetric electrolyte ik T /2¢2z%n4,)%°. As shown

sulting from an integration of Eq. (3), where

211 (a*)
a*Ip(a*)’ ()

I1 is a first-order modified Bessel function of the first kind.
As shown in the plot, the results show the discrepancy be-
tween the two solutions for a zeta potential value of 100 mV,
which is typical of our electroosmotic pumps. As expected,
both the numerical and linearized solutions pftend to
unity for largea® systems which have uniform fluid veloc-
ity throughout most of the flow cross section. The behavior
at low a*, however, highlights the important difference be-

fl@H=1-
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tween the two solutions and shows how the linearized solu- capillary and made no allowance for the modified ionic con-

tion underpredicts pump flow rate performance.

The maximum flow rateQmax, and maximum pressure,

A Pmax, of the pump are derived from Eq. (2) as

AV,
Q= — L 8 AVl @)
T uL
8eLV,
A Prmax= — Sizeﬁf. (®)

These equations show that, for a given valuefgfhigh

electric fields and large cross-sectional areas lead to high
flow rate, while pressure performance is linked to small pore
diameters and high voltage. This formulation can be nondi- "2

mensionalized as

centration in the electric double layer (EDL) near the wall.
Such an assumption is justified when zeta potential is low
(e.g.,]¢*| < 1) and the molar conductivities of cations and
ations are approximately equal (e.g., as in the case of sim-
ple KCI electrolytes). However, as suggested by the work of
Morrison and Osterle [26], we can derive the advective and
electromigration components of current from the charge dis-
tribution, velocity field, and conductivity distribution within
the pores as

a

dv:Zn/u(r)p(r)rdr, (16)

0

a

Vet
off = —Te’ 9) lem= 27 /[6 (r)Ex]rdr, 17)
x _ _ Veith 10 ’
ef = "L (10) wherep(r) is the charge density at a point distancom
Omaxti the axis andr (r) is the conductivity at this point. For finite
max = Tec?A (11) values ofg* and symmetric electrolytes in which the mo-
lar conductivities of cations and ations can be individually
AP*. — A Pmaxa (12) specified, the charge density and conductivity terms can be
max 2 .
8e¢ written as
so that the equations become ed ( do
__f4(,49) 18
. W . P(r) rdr (rdr) (18)
Omax = ?fEeﬁ’ (13) zep zeg
APax= f Vi (14) D=ce [’” ex"’(_ﬁ) A eXp<k_T>]’ o

Equations (7) and (8) give the ratio where A, and A_ are the cation and anion molar conduc-

Omax ¥ Ad? tivities, respectively. Note that these expressionsg@nd
K= =T aul’ (15) o can be approximated using Taylor series expansions of the
max H sinhtermin Eq. (5) and the exponentsin Eq. (19). To second-

The parametet can be useful in determining the tortuosity order accuracy, the advective and electromigration current
of the pump experimentally from pressure and flow rate mea- densities;, in the channel are then

surements and is independent of pump zeta potential. For ) )
example can be obtained using dry and wet weight mea- ;. _ ¢ Pra (1 r ) lo(r)

surements of the porous structure andan be estimated Aup2 a? ) Io(a)
using mean pore radius measurements performed using a E Io(r) 1 Io(r) 20
medrcuryintrusion potrosfirtneter [25t].Gi\éeqthese pa'ramettersf tookrp @)~ o) | (20)
and a measurement of temperature during experiments o N _ x2 2
Omax, and A Ppax (to calculate the value of the bulk vis-  jo= 0o Es [1_ Ay = A-) Iotr) | 77 é(r)} (21)
cosity 1), Eq. (15) can be used to estimate A Io(a) 2 Ig(a)
where

2.2. Electrical current in electroosmotic flow 2.2

S P

kT’ T osor?’

In this paper, we present the derivation of an expression
that can be used to predict total current in an EO pump us-In Eq. (21),A = AL + A_. The parameteg can be inter-
ing a symmetric electrolyte model. As discussed by Rice preted as the ratio of EOF advective current to electromi-
and Whitehead [21], the total current in an electroosmotic gration current, and describes the maximum advective cur-
pumping channel is the sum of advective and electromigra- rent density associated with EOF. In applying these simple,
tion currentslygy and Iem, respectively, for the typical case symmetric electrolyte equations for current density to our
of negligible ion diffusion. In the electromigration compo- buffered electrolyte case, we use the valence of the sodium
nent, Rice and Whitehead made the very rough approxima-ion (+1) and the molar conductivity of the sodium ion:
tion that ion conductivity throughout the cross-section of the A, =5 x 10~3 S n?/mol [27]. Conductivity measurements
pore is uniform throughout the fluid up to the wall of the show that our bulk solution, sodium tetraborate buffer, has



S. Yao, J.G. Santiago / Journal of Colloid and Interface Science 268 (2003) 133-142 137

35 T T T T
30 F —=—a/2= 0.1, Numerical
t —3—a/a=0.1, 2nd Order Approx.
25| —@—a/i= 1, Numerical

—O—a/r=1, 2nd Order Approx.

The total current in a single pore is obtained by inte-
gration of Egs. (16) and (17) (which are respectively area
integrals of Egs. (20) and (21)) to yield

a

wael Py o\ 2r
I,=—"— 1--)—=d
g n /( Z)az ’
0
a

+na282Ex/ de 22rd

- —— — ar

W dr ) a?
0

0.0 0.2 0.4 0.6 0.8 1.0

a
rla 2By | | Ay exp[ 22
+7Tacoox/|:+ T

0

+ A exp(ze‘”>] % dr. (22)

—&—a/. =10, Numerical
20 | —4A—a/x =10, 2nd Order Approx.
r —w—a/A =100, Numerical
I ——a/A =100, 2nd Order Approx,

ilc E

kT

The first term in Eq. (22) is the advective current which is
proportional to the pressure gradieit;, and the second
term is the advective current due to EOF, and the third is
the electromigration current. The total current through all of
the pores is obtained by integrating Eq. (22) over the flow
cross-section of the porous structure to obtain

VA
- Jrra?
We can now derive another relation which is useful in ex-
Fig. 4. Variation of current density across a single cylindrical pore with pe”ment_al characterizations of pump parameters and is ex-
Py = 0 for nominal values of* — —3.9 and 8 — 6.8. (a) Numerical pressed in terms of pump flow rate and current. Because of
solution for total current density is compared with the second-order ap- the effects of advective current, the total current of an EO
proximations given by Egs. (20) and (21). (b) Numerical solution of the pump is expected to be a linear function of backpressure.
contributions c_)f gdve_ctive current, and electromigration current, along with The maximum currenmax is therefore obtained at the point
total current distribution, fon /1 = 1 and 50. . .

where AP = 0 (assumingA P > 0). Combining Egs. (7)

I I,. (23)

and (23),
a nominal conductivity ofA = 7.5 x 10~ Sn?/mol [28], Omax el
so that the effective molar conductivity of buffer ions other = e (24)
than sodium (e.g., B(OH)and B;O3(OH), ) was estimated where

asA_ =25x 10"3 Sn?/mol.
Figure 4a shows the variation of the total current density ar AN 20k
. . LT B do 2r
across a single capillary from the PB solution in Fig. 2 for g= f ﬁ/ e
,
0

*

2
the case of zero pressure gradieits £ 0). In this calcula- a*
tion, we assume a typical zeta-potential value of 100 mV and e
typical parameter values gf = —3.9 andg = 6.8. Shown Ay e A w2,
together with the numerical solution are the approximate +/ TeXp(_w )+ Texm" ) ﬁdr - (29)
expressions Egs. (20) and (21). The second-order-accurate 0

expressions for current density clearly underpredictthe con-  The expression of Eq. (25) was evaluated using the nu-
ductivity in the EDL for finite values op*. Figure 4b shows  merical scheme described earlier with nominal parameter
the individual contributions of advective and electromigra- values of¢* = —3.9, 8 = 6.8. The results are plotted in
tion current as derived from the numerical solution of the Fig. 3. The dimensionless flow rate per current ragiore-
nonlinear PB equation. The advective current componentduces to zero for small nondimensional pore diameters as
decreases to zero at the wall because of the imposed noelectromigration ion fluxes per unit area are very high in
slip condition on liquid motion. The electromigration cur- that regime, while flow rate per unit area is greatly reduced
rent component is proportional to local ion density and so from the case of infinitesimal EDLg. also displays antici-
increases as* approaches unity. The EDL can have a sig- pated trends to unity for large*. Shown together with the
nificant effect on current densities and area-average curreninumerical solution forg is the small potential, second or-
density can be a strong function @f. der accurate approximation of the PB equation, in which
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Eq. (25) can be derived analytically as follows:

ga*, ¢, p) gf(a*)/{ﬁ[

1£(a*) = Io(a*)I2(a*)

}

12(a¥)
L1 S =40 h@
A a*Ip(a*)
¢+ _If(a*q
+= [1 2@l | (26)

Note the discrepancy between the numerical and the second-

order approximated solutions fgrand the second-order ap-
proximation can overpredict the paramegdyy 30%. These
trends have important consequences in the determination o
flow rate and thermodynamic efficiency of the pump. In par-
ticular, Eq. (22) allows for the estimation fgrof the pump
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modynamic efficiencynopt, as a function of nondimensional pore size for
*=-39andB =6.8.

flow rate and current measurements at the zero pressure gras 3. Thermodynamic efficiency of porous EO pumps

dient condition (and estimates of the fluid propertiess,
and o). This method is used to characterize the perfor-
mance of our EO pumps in Yao et al. [28].

The maximum total current can be nondimensionalized
as

_ Imax)»

o 27)

Ir}k\ax
which also yields a relationship for the nondimensional elec-
trical field,

v f

I =—=—E. 28

max T g eff ( )
Last, we can derive for the nonlinear problem a relation

for the ratio of the maximum values of the advected current

to the total current in a pump:

a*
nasats | 1 [ do*\*2r"
Imax - ;*2 dr* a*2
0
a* “x 2 x
B do 2r N
=) \a7) o=
0
A A 2+
— r
0
(29)

An analysis of the thermodynamic efficiency of a planar
EO pump has been presented recently by Chen and San-
tiago [18]. Their model applies a Debye—Hiickel approxi-
mation and uses a measured value of zeta potential on the
silica/symmetric electrolyte interface as an input variable.
Here we present three extensions to their formulation includ-
ing a numerical solution for the PB potential formulation (to
account for finite values af*), the effects of advective cur-
rent (which are significant in our current pump structures),
and an evaluation of the operational point of maximum ef-
ficiency. Thermodynamic efficiency is defined as the useful
pressure work delivered by the pump over the total power
consumption,

Wp _APQ

! Vappl ~ Vappl
whereVappand! are the voltage and the current in the main
circuit. The total power consumption is expressed as the sum
of pressure work, viscous dissipation and electrical dissipa-
tion. As described by Chen and Santiago, the power con-
sumption associated with dissociation of water molecules
(electrolysis) at the electrodes is typically negligible com-
pared to the overall power dissipated by the pump and is not
included in the formulation.

Combining Egs. (2), (23), and (30) above, the thermody-
namic efficiency can be derived as

(30)

These current maxima occur in the case of zero pressurgynpere

load. This current ratio is strongly dependent @h and
weakly dependent of. As shown in Fig. 5, the numerical
solution of this ratio as a function af* is similar in shape to
the thermodynamic efficiency (discussed in detail in the next
section) but with a peak value of 0.29&t = 4 and which
asymptotes to zero for large valuesat The expected the-

(A AP)AP!

T="6m—ap (31)
B @’ a*2

*= Ve 2875 (32

Here pressure is normalized &sP’ = AP /A Pmax. The
parameter takes into account the loss in efficiency due to
the electrode-to-frit voltage drop (quantified Bpp/ Vet)

oretical, area-averaged advective current can be as much aand the effects of the EDL on flow rate, pressure, and cur-

29% of the total current.

rent generation. AlthoughD is a linear function ofAP,
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the maximum value ofy is not simply the point where  predictions of Chen and Santiago [18] for planar electroki-
AP = APmax/2 since the total current,, in the denomi- netic pumps.

nator of Eqg. (30) is also a function of pressure load. The  The peak in the efficiency curve is a result of the com-
optimal point of operation can be determined by formulat- peting effects of Joule heating (which dominates at large

ing the partial derivative of Eq. (31) with respect 2oP’ and reduced hydraulic power and higher current density at
while holdingé constant to obtain low a*. We first consider the large* limit. To demonstrate
the effect of viscosity and temperature, we define ion mobil-
, 0 62 6 ity asv = uy/ F [29] which is a measure of the drift velocity
AP = 2 V16 4 (33) 1y acquired by an ionic species subjected to a farcélext,

if we approximate ions as hard spheres with a characteris-
Expanding the right hand side of Eq. (33) in a Taylor series, tjc Stokes diametey/, defined as the diameter of a sphere
we have in continuum fluid flow with a drag equal to that of the
6 4 or2 2 1 ion [29]. Under this approximat.ioln, _the ion mobility is=
AP = Z(l_ J1- 5) = 2[5 +o2t 0<¥>] (34) 1/37 ud and the molar conductivity igl = z2¢2N, /37 ud.
Fora*> 1, f ~1 andg ~ 1, and from Eq. (37), efficiency
Taking a second-order-accurate approximation of this rela- becomes

tion, the optimum pressure condition is 672de(T)2¢ (PH, oo, T, . . )2 .
AP, =4+ = ot . .
opt— 2 + 20 (35) where the parameters in parenthesis have been written to re-
and the optimal efficiency is then, to second order, mind the reader that permittivity and zeta potential depend
on at least several independent parameters such as temper-
~ 62 —1 (36) ature and the chemistry of the working electrolyte and the
lopt = 93 _202_29° solid surface. This relation points out interesting functional-

ities. First, in this regime, thermodynamic efficiency is not
a function of solvent viscosity and temperature dependent
only through permittivity and zeta potential. Unless temper-
ature drastically affects ion density (as it might in the case

For thin EDL systems with much greater than unity, a first-
order-accurate expression&fP’ = 0.5 can be used (so that
the optimum pressure I8 Pmax/2). For this simple cas@opt

is simpl . . ;
Py of chemical reactions in a weak electrolyte)has only a
~ } _ Vett 2Bf8 (37) weak dependence on temperature. Second, we see that larger
lopt = 0 Vapp a*2 ions (with associated lower molar conductivities and mo-

We theref hat th be i q bilities) are thermodynamically favorable as they impart the
e_(tj er|<_a o(rje.see t atht € p?jramagranﬁ. € |nter$retﬁ aS  same force density into the flow with less Joule dissipation.
an idealized inverse thermodynamic efficiency for the case g e same reason, ions with valances higher than unity

where the advective current is small compared to the elec- e nfavorable. In the regime of thin EDLS, smaller pores
tromigration current. are therefore favored and there is a decreasggfasa*

Note thatjopt is highly dependent on the size of the pores j,.eases. Higher conductivity yields higher current densi-
and this dependence provides insight to the design of high-4os and lowers zeta potential (see Eq. (38) and Fig. 6) and

efficiency pumps. Figure 5 shows a plot g for both is therefore also detrimental to thermodynamic efficiency.
the exact formulation and the small-potential, second-order- o wever. as discussed in Yao et al. [28], conductivity of-
accurate limit with nominal parameter values{gf= —3.9 ten has a lower limit dictated by practical considerations

and = 6.8, and an ideal condition Ofefi = Vapp FOrthe  5550ciated with pH stability. That is, for a given electrolyte
purpose of this plot, we therefore assume a relative constani,ffer, jower ion concentration implies lower buffering ca-
zeta potential of = —100 mV. Althoughthe overalitrend of  acity. Low buffering capacity can adversely affect pH in
both solutions is similar, a discrepancy is apparent at small high-flow-rate, high-current applications and thereby affect
values of nondimensional pore sizes. The peakiqpt of zeta potential and overall pump performance.

the numerical solution occurs at = 2.5 as compared to a For the largea* regime, we can also use an approx-
value ofa* = 4.2 for the approximated solution. Further, the imate expression forr to express thermodynamic effi-
second-order approximation underpredicts the increase inciency in terms of surface charge density. As discussed by
the conductivity of EDLs associated with finite valueg0f Hunter [1], this expression follows from the PB equation as
and therefore overpredicts the maximum efficiency by afac- ; — 5 119(a*)/(¢I1(a*)) for small potentials. Substitution
tor of 1.2. For our electrolyte chemistries and the wall prop- of this expression into Eq. (38) yields

erties predicted by the zeta potential model, dffe= 2.5 2
point of the numerical solution yieldgpt = 6.5%. For in- ot 3772515;45";
stance, the numerical model suggests that 48-nm-diameter aszieng,
pores are optimal for 1 mM ion concentrations. The effi- This expression shows that the dependencgogfon ¢ is
ciency curves shown here are qualitatively similar to the perhaps less important than suggested by Eq. (38) and em-

(a*> 1, smallc*). (39)
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00 ' electroosmotic pumping should be interpreted only as an ap-

0.02 - proximation for values ofi* of less than about unity. The
— 004l model uses a simple form of the Boltzmann equation which
= may result in inaccurate descriptions of the potential distrib-
§ -0.06 - ution (and therefore ion density distributions) for the case of
£ o8l overlapping charge double layers. Although such layers have
; recently been treated theoretically by Qu and Li [32] and
g 0101 Conlisk et al. [33], we believe that the theory for overlap-

PSRy Site-binding model (Yates et al., 174)"" ping EDLs and associated models for the dependengenf

- for KCl/silica parameters (Scale et al., 1992) %
. Curve fit a* has not yet been adequately developed. We are currently
B S — working on a model for electrokinetic flows with overlap-
pH ping EDLs and will discuss this topic in a future paper.

Fig. 6. Nonlinear fitting curve for the GCSG site-binding model for the - :
zeta potential of KCl/silica interfaces. The curve fit shown is of the form 2.4. Model for pH and ion denSIty dePendence of

¢ = (—0.058logo(pH) 4 0.026)(—l0g;g(ceo)) 102 which gives values zeta potential
within 10% of the GCSG site-binding model prediction within the follow-
ing range: < pH< 10, 1074 < coo <1072 M. Zeta potential is a key parameter in the characterization
of any EO pump system. Classical theory describes the EDL
phasizes the importance of using monovalentions to achievegs divided into the Stern and Gouy—Chapman diffuse lay-
high-efficiency pumps. Also, this expression shows the ex- ers [2]. The Stern layer counterions are absorbed onto the
plicit dependence ofopt on temperature and surface charge wall, while the ions of the Gouy—Chapman layer are diffuse
density, which is a strong function of pH and concentra- and therefore available to impart work on the fluid. The plane
tion [30]. ) ~ separating these two layers is called the shear plane, and the
. At values ofq* of order unlty'and lower, the'effects of fi- potential at this plane is the zeta potential, Combining
nite EDLs dominate. In the regime of <1, using second-  the Boltzmann distribution of the EDL ions with the Pois-
order-accurate series expansionsfandg, Eq. (37) yields son equation, Gouy—Chapman (GC) theory relates the zeta
_ 3rd2a?72e?n,, . . potential to the effective surface charge of the shear plane,
Mopt=——"g272 (@* <1, smallz™). (40) which is a strong function of pH and a relatively weak func-

If we assume a constant zeta potential, this equation showg'©" of ionic concentratlon. e -
Because of the immense difficulties in predicting the

nopt decreases as* decreases in the small regime (see . . . - .
Fig. 5). This can be explained in terms of pressure work. Be- Valué of¢ from first principles, this parameter is typically
cause of the no-slip condition at the wall, finite EDLs imply " empirically determined value obtained using electroos-

a significant deficit in mass flux as compared to the thin EDL Motic flow or streaming sodium tetraborate buffer general,
“plug flow” case. This contributes to lower flow rate per unit difficult to dgtermme, even for a f|?<ed Wolrklng fluid and sur-
area, lowering hydraulic power produced. Since pressure isface material. However, as we discuss in Results, the value
alinear function of flow rate, pressure forces are accordingly ©f ¢ varies significantly with changes in the ionic concen-
decreased in this fully viscous liquid flow. tration, cog, Of .the elegtrolyte. As pointed out by Yates et
In addition to lower hydraulic power, channels with small  @l- [30], applying a simple Gouy-Chapman diffuse EDL
a* also typically have higher average current density since, model leads to the erroneous conclusion thatales with
at high zeta potentials, the conductivity of EDLs can be concentration as 2. Yates et al. [30] have presented an
much higher than the bulk conductivity. For example, local EDL model, called the site-binding model, on the basis of
ion conductivity near the wall for the prediction given by Gouy—Chapman-Stern—Grahame (GCSG) theory, which can
Eq. (19) is 34 times higher than the conductivity of the bulk be used to predict across a significant range of pH and
electrolyte, as shown in Fig. 4b. At low*, both this and ionic concentration values for simple buffers on oxide sur-
the hydraulic power reduction discussed above contribute tofaces. Their model separates the surface and buffer associa-
lower thermodynamic efficiency for decreasirig Note that tion/dissociation reactions of the EDL into those occurring
the model described here neglects ionic current in the “stag-on a layer immediately adjacent to the surface (below the in-
nant layer” of counterions immediately adjacent to the wall ner Helmholtz plane, IHP) and a layer corresponding to the
of the microchannel, as discussed by Lyklema et al. [31]. molecules further from the wall but unable to diffuse (above
However, the effects of such ion conduction would further the outer Helmholtz plane, OHP). GCSG theory takes into
increase average current density in electrokinetic channelsaccount interfacial chemical reactions at the IHP (involving
and therefore should not change the trends predicted by oursilanol groups at the surface and water ions) and the reac-
model in the lowa* regime. tions which occur at the OHP (which involve water ions and
Lastly, we should note that the theoretical development the association/dissociation reactions of the electrolyte ions).
given in this paper for flow rate, pressure, and efficiency of This theory predicts a less pronounced (and more accurate)
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dependence of zeta potential on bulk ionic concentration heating, which dominates the trend in efficiency at larte
than the GC theory. and the effects of reduced hydraulic power and higher cur-
Scales et al. [34] have applied the model of Yates et rent density in the low* regime.

al. [30] to the case of KCI electrolytes on silica surface. Lastly, we note that the Boltzmann equation is not di-
The site-binding model fits their experimental data very well rectly applicable for overlapping EDL fields where the cen-
given modeling parameters suggested by Scales. Howeverter potential associated with the wall charges is nonzero, and
because of the nature of the equilibrium reaction formula- the ionic concentrations in the center of the pore are not nec-
tions, it is difficult to derive an explicit formula fay based essarily equal to those of the original bulk concentration.
on their model. For our pump efforts, therefore, we have gen- Therefore, the solutions of the PB equation presented here
erated the following explicit relation faor as a function of may result in inaccuracy in our model for the thick EDL case
pH and ion density by curve fitting to the model data pre- (e.g.,a* less than about unity). We are currently developing
sented by Scales: an analytical model to account for the effects of overlapping

¢ = (—0.058log o(pH) + 0.026)(— 10g;p(co0)) (41)
This curve fit predicts the value given by the side-binding

1.02 EDLs.

model to within 10% for ranges of ionic concentration of Acknowledgments
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model for silica/KCI interfaces as an approximate predic-
tion of trends in our borosilicate/borate buffer pumps. One

justification for this is that, as discussed earlier, we expect Appendix A. Nomenclature

the buffers in our high zeta potential porous structures to act
as symmetric electrolytes with the properties of the univa- A
lent sodium ion. A second justification of this is that the Ex
observed trends of zeta potential as a function of pH and ¥
concentration for silica and borosilicate are similar [35]. In /
Results, we quantitatively compare the trends we observedL
from our borosilicate-based EO pumps to the trends reportedLe

by Scales et al. [34] for silica surfaces with KCI. Ny
Py
AP

3. Conclusions 0
T

We have developed analytical expressions for the elec-V
troosmotic flow rate, current, and thermodynamic efficiency Wp
for a porous structure EO pump operating under a pressure¥
load. The model includes a numerical solution of the nonlin- V.
ear Poisson—Boltzmann equation for electric potential and a
the coupling of this solution to the equations of fluid motion d
and ionic current. The model is valid for large zeta poten- ce
tial and accounts for the nonuniformity of ion conductivity e
across the flow areas of a porous pump. We treat our buffersi
as symmetric, monovalent electrolytes and leverage a sin-k
gle measurement of bulk liquid conductivity to account for ne
the current contribution of all ions present in the buffer. The r
model uses determined pore sizes to predict absolute pres
sure performance. The model also leverages a curve fit ofz
the GCSG site-binding model for KCl/silica interface to es- A
timate the dependence of zeta potential on ionic density andg
pH in our borosilicate-based system. The model expressese
pressure, flow rate, current, and thermodynamic efficiency n
of EO pumps as a function of quantifiable electrolyte prop- 6
erties and the properties of the electrical double layer. For the A
nondimensional surface potential thermodynamic efficiency u
curve predicts a maximum is a result of the effects of Joule v

Cross-sectional area &n

Electric field (V nT1)

Force (N)

Current (A)

Length (m)

Average length along the pore path (m)
Avogadro’s number (moft)

Pressure gradient (Path)

Pressure capacity (Pa)

Flow rate (mlmin1)

Temperature (K)

Potential (V)

Pressure work (W)

Total volume of the porous medium @n
Void volume of the porous medium @n
Pore radius (m)

Sphere diameter (m)

Electrolyte concentration (M)
Elementary charge (C)

Current density (Am?)

Boltzmann constant (J&2)

Electrolyte number concentration (1#)
Radial coordinate (m)

Velocity (ms™1)

Charge number (<)

Molar conductivity (S d mol~1)
Nondimensional advective current parameter (-)
Permittivity of liquid (CV-tm~1)
Thermodynamic efficiency (-)
Nondimensional efficiency parameter (-)
Debye length (m)

Viscosity (Pas)

Mobility (ms~1N—1)
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o) Charge density at a point distancdrom the axis
(Cm3)

o(r)  Conductivity at a point distance from the axis
(Sm)

Oso Electrolyte conductivity (S mt)

O Surface charge density (CTf)

1) Electrical potential (V)

e Zeta potential (V)

T Tortuosity (-)

) Porosity (-)

Subscripts

adv Advection

app Applied value

eff Effective value

em Electromigration

max Maximum value

opt Optimal value

p Single pore

+ Cation

— Anion

References

[1] R.J. Hunter, Zeta Potential in Colloidal Science: Principles and Appli-
cations, Academic Press, London, 1981.

[2] R.F. Probstein, Physicochemical Hydrodynamics, 2nd ed., Wiley, New
York, 1994.

[3] L. Jiang, J.C. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang,
P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, K.E.
Goodson, IEEE Trans. Comp. Packag. Manufact. Technol. 25 (3)
(2002) 347.

[4] J.E. MacNair, K.C. Lewis, J.W. Jorgenson, Anal. Chem. 69 (1997)
983.

[5] Y. Fintschenko, A. van den Berg, J. Chromatogr. A 819 (1998) 3.

[6] V. Pretorius, B.J. Hopkins, J.D. Schieke, J. Chromatogr. A 99 (1974)
23.

S. Yao, J.G. Santiago / Journal of Colloid and Interface Science 268 (2003) 133-142

[7] F. Theeuwes, J. Pharmaceutical Sci. 64 (12) (1975) 1987.
[8] F. Theeuwes, U.S. Patent 3,923,426, 1975.
[9] Y. He, W. Gan, Chinese Patent 97212126.9, 1998.
[10] W. Gan, L. Yang, Y. He, R. Zeng, M.L. Cervera, M. de la Guardia,
Talanta 51 (2000) 667.
[11] P.H. Paul, D.J. Rakestraw, U.S. Patent 6,019,882, 2000.
[12] C. Yan, U.S. Patent 5,453,163, 1995.
[13] M.C. Oborny, P.H. Paul, K.R. Hencken, G.C. Frye-Mason, R.P. Man-
ginell, U.S. Patent 6,224,728, 2001.
[14] P.H. Paul, D.J. Rakestraw, D.W. Arnold, K.R. Hencken, J.S. Schoe-
niger, D.W. Neyer, U.S. Patent 6,277,257, 2001.
[15] S. Zeng, C.H. Chen, J.C. Mikkelsen, J.G. Santiago, Sens. Actuat.
B 79 (2-3) (2001) 107.
[16] S. Zeng, C.H. Chen, J.G. Santiago, J. Chen, R.N. Zare, J.A. Tripp,
F. Svec, J. Fréchet, Sens. Actuat. B 82 (2—-3) (2001) 209.
[17] S. Yao, D. Huber, J.C. Mikkelsen, J.G. Santiago, in: Proc. ASME
IMECE Microfluidics Symposium, New York, 2001.
[18] C.H. Chen, J.G. Santiago, J. Microelectromech. Systems 11 (6) (2002)
672.
[19] D.J. Laser, S. Yao, C.H. Chen, J.C. Mikkelsen, K.E. Goodson, J.G.
Santiago, T. Kenny, in: Proc. Transducers '01, Munich, 2001.
[20] P. Mazur, J.Th.G. Overbeek, Rec. Trav. Chim. 70 (1951) 83.
[21] C.L. Rice, R. Whitehead, J. Phys. Chem. 69 (1965) 4017.
[22] E.J.W. Verwey, J.Th.G. Overbeek, Theory of Stability of Lyophobid
Colloids, Elsevier, Amsterdam, 1948.
[23] W.R. Bowen, F. Jenner, J. Colloid Interface Sci. 173 (1995) 388.
[24] P. Moin, Fundamentals of Engineering Numerical Analysis, Cam-
bridge Univ. Press, Cambridge, UK, 2001.
[25] E.W. Washburn, Physics 7 (1921) 115.
[26] F.A. Marrison, J.F. Osterle, J. Chem. Phys. 43 (1965) 2111.
[27] D.R. Lide, CRC Handbook of Chemistry and Physics, 76th ed., CRC
Press, Boca Raton, FL, 1995.
[28] S. Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen, J.G. Santiago, in press.
[29] J.O’M. Bockris, A.K.N. Reddy, Modern Electrochemistry: lonics, 2nd
ed., Plenum, New York, 1970.
[30] D.E. Yates, S. Levine, T.W. Healy, J. Chem. Soc. Faraday Trans. 74
(1974) 1807.
[31] J. Lyklema, S. Rovillard, J. DeConinck, Langmuir 14 (20) (1998)
5659.
[32] W. Qu, D. Li, J. Colloid Interface Sci. 234 (2000) 397.
[33] A.T. Conlisk, J. McFerran, Z. Zheng, D. Hansford, Anal. Chem. 74 (9)
(2002) 2139.
[34] P.J. Scales, F. Grieser, T.W. Healy, Langmuir 8 (1992) 965.
[35] T.W. Healy, L.R. White, Adv. Colloid Interface Sci. 9 (1978) 303.



	Porous glass electroosmotic pumps: theory
	Introduction
	Theory
	Electroosmotic flow model
	Electrical current in electroosmotic flow
	Thermodynamic efficiency of porous EO pumps
	Model for pH and ion density dependence of zeta potential

	Conclusions
	Acknowledgments
	Nomenclature
	Subscripts

	References


